

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: MATHEMATICS-III(18HS0834) **Branch**: B.Tech(ECE) Year &Sem: II-B.Tech&I-Sem **Regulation:** R18

NUMERICAL METHOD -I

1.a)Write the formula to find the root of an equation by Regula Falsi method	[2M]			
b)Write Simpson formulae	[2M]			
c) Write the formula to find a cube root of a number by Newton Raphson's method	[2M]			
d) Evaluate $\Delta \tan^{-1} x$	[2M]			
e) Construct a forward difference table for the function $y = x^3$ for $x = 0, 1,2,3,4,5$.	[2M]			
2 .Find a positive rootof $x^3 - x - 1 = 0$ correct to two decimal places by Bisection method. [10 M]				
3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using False position method.	[10 M]			
4. Find the root of the equation $xe^x = 2$ using Regula-falsi method.	[10 M]			
5. Find a real root of the equation $xe^x - \cos x = 0$ using Newton-Raphsonmethod.	[10 M]			
6. Using Newton-RaphsonMethod				
(i) Find square root of 28. (ii) Find cube root of 15.	[10M]			
7. From the following table values of x and $y = tanx$ interpolate values of ywhen				
$x=0.12 \ and \ x=0.28$				

0.10 0.15 0.20 0.25 0.30

[10M] 0.2553 0.1003 0.1511 0.2027 0.3093

8.a) Using Newton's forward interpolation formulaand the given table of values

X	1.1	1.3	1.5	1.7	1.9
f(x)	0.21	0.69	1.25	1.89	2.61

Obtain the value of f(x) when x=1.4[5M] **b**) Use Newton's Backward interpolation formula to find f(32)

given f(25) = 0.2707, f(30) = 0.3027 f(35) = 0.3386, f(40) = 0.3794[5M]

9.Evaluate $\int_{0}^{1} \frac{1}{1+x} dx$ (i) By trapezoidal rule and Simpson's $\frac{1}{3}$ rule [5M]

(ii) Using Simpson's $\frac{3}{8}$ rule and compare the result with actual value [5M]

10.a) Compute $\int_{0}^{4} e^{x} dx$ by Simpson's $\frac{1}{3}$ rule with 10 sub divisions. [5M]

b)Compute $\int x^2 \log x dx$ using trapezoidal rule and Simpson's rule by taking 10 sub divisions. [5M]

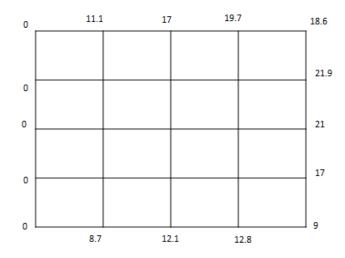
y(0)=1, taking h=0.2 [5M]

MATHEMATICS-III

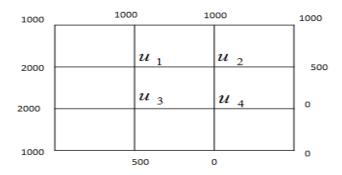
SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road -517583

OUESTION BANK (DESCRIPTIVE)


Subject with Code :MATHEMATICS-III(18HS0834)Branch: B.Tech(ECE)Year &Sem: II-B.Tech& I-SemRegulation: R18

Year &Sem: II-B.Tech& I-Sem	Regulation: R18
	<u>IT –II</u> L METHOD-II
1. a)write R-K method of 4 th order formula b)write the diagonal five-point formula	[2M]
c)write the Taylor's series solution of $y' = -xy$, y(0 d)write the standard five-point formula	
e)Use Euler's method to find y(0.1) given $y' = (x^3)^{-1}$	5]
2 a) Tabulate y (0.1), y (0.2), and y (0.3) using Taylor $y^1 = y^2 + x$ and $y(0) = 1$	141
b)Using Euler's method, find an approximate value of	y corresponding to $x = 1$ given that $\frac{dy}{dx} = x + y$
and $y = 1$ when $x = 0$.	[5M]
3 Using Taylor's series method find an approximate val $y^1 - 2y = 3e^x$, $y(0) = 0$. Compare the numerical sol	
4a)Solve $y^1 = x + y$, given y (1)=0 find y(1.1) and y(1 b)Solve by Euler's method $\frac{dy}{dx} = \frac{2y}{x} given \ y(1) = 2and \ find \ y(2).$.2) by Taylor's series method [5M] [5M]
5Using R-K method of 4 th order, solve $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}$,	y(0)=1 Find $y(0.2)$ and $y(0.4)$ [10M]
6Using R-K method of 4 th order find y(0.1),y(0.2) and y	$y(0.3)$ given that $\frac{dy}{dx} = 1 + xy, y(0) = 2$ [10M]
7) a)Using Runge-Kutta method of fourth order, co	ompute $y(0.2)$ from $y^1 = xy$


b) using Euler's method $y = y^2 + x$, y(0)=1. Find y(0.1) and y(0.2) [5M]

- 8) Solve $y'' x(y')^2 + y^2 = 0$ using R-K method of 4th order for x = 0.2 given y(0) = 1, $y^1(0) = 0$ taking h=0.2 [10M]
- 9)) Solve the Laplace Equation $u_{xx} + u_{yy} = 0$ given that,

[10M]

10) Evaluate the function u(x, y) satisfying $\nabla^2 u = 0$ at the pivotal points given the boundary values as follows:

[10M]

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: MATHEMATICS-III(18HS0834) **Branch**: B.Tech(ECE) Year &Sem: II-B.Tech& I-Sem **Regulation:** R18

TRANSFORMS CALCULUS-I

UNIT-III

1. a) Find the Laplace transform of $e^{at} \cosh bt$ [2 M]

b) Find the Laplace transform of $3\cos 3t.\cos 4t$ [2M]

c) Find $L^{-1}\left\{\frac{2s-5}{4s^2+25}\right\}$ by using linear property. [2 M]

 $L\{t^2+3t+10\}$ d) Find [2M]

e) State Convolution theorem. [2M]

2. a) Find the Laplace transform of $e^{-3t}(2\cos 5t - 3\sin 5t)$ [5M]

b) Find the Laplace transform of $f(t) = \int_{0}^{t} e^{-t} \cos t \, dt$. [5M]

3. a) Find the Laplace transform of $f(t) = \frac{1 - \cos at}{t}$ [5 M]

b) Show that $\int t^2 e^{-4t}$. sin $2t dt = \frac{11}{500}$, Using Laplace transform [5 M]

4. a)Find the Laplace Transform of Square-wave function of period 2a,

defined as $f(t) = \begin{cases} k, & 0 < t < a \\ -k, & a < t < 2a \end{cases}$ [5 M]

b) Using Laplace transform, evaluate $\int_{0}^{\infty} \frac{\cos at - \cos bt}{t} dt$. [5 M]

5. a) Find the Laplace transform of $f(t) = e^{-4t} \int_{0}^{\infty} \frac{\sin 3t}{t} dt$. [5 M]

b) Find the Laplace transform of $f(t) = t e^{2t} \sin 3t$ [5 M]

6. a) Find $L^{-1}\left\{\frac{3s-2}{s^2-4s+20}\right\}$ by using first shifting theorem. [5M]

b) Find $L^{-1} \left\{ \frac{1}{2} \log \left(\frac{s^2 + a^2}{s^2 + b^2} \right) \right\}$ [5M]

7. a) Find $L^{-1}\left\{\frac{1}{(s^2+5^2)^2}\right\}$, using Convolution theorem. [5 M]

b) Find $L^{-1} \left\{ \frac{s^2}{(s^2 + A)(s^2 + 25)} \right\}$, using Convolution theorem. [5M]

- 8. a) Find the Inverse Laplace transform of $\frac{1}{s^2(s^2+a^2)}$. [5 M]
- b) Find $L^{-1} \left\{ s \log \left(\frac{s-1}{s+1} \right) \right\}$ [5 M]
 - 9. Using Laplace transform method to solve $y^{11} 3y^1 + 2y = 4t + e^{3t}$ where y(0) = 1, $y^1(0) = 1$ [10M]
 - 10. Solve the D.E $\frac{d^2x}{dt^2} + 9x = \sin t$ using Laplace Transform given that

$$x(0) = 1, x\left(\frac{\pi}{2}\right) = 1$$
 [10M]

<u>UNIT – IV</u>

TRANSFORMS CALCULUS-II

1. a) Define fourier sine and cosine transforms

[2M]

b) Find the fourier sine transform of $\frac{1}{y}$

c) Define the inverse fourier sine and cosine transforms

[2M]

d) Find the fourier cosine transform of e^{-ax} , a > 0 and hence deduce the inverse formula

[2M]

e) Find the finite fourier sine transform of f(x) = 2x, 0 < x < 4.

[2M]

2. a) Express $f(x) = \begin{cases} 1, 0 \le x \le \pi \\ 0, x > \pi \end{cases}$ as a fourier sine integral and hence evaluate

$$\int_{0}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) d\lambda$$

b) Prove that (i) F_s { a f(x) + b g(x) }= a F_s (p) + b G_s (p)

(ii) F_c { a f(x) + b g(x) }= a F_c (p) + b G_c (p)

[5M]

3. a) Prove that F[x^n f(x)] = $\left(-i\right)^n \frac{d^n}{dp^n} \left[F(p)\right]$

b) Prove that $F_s \{ x f(x) \} = -\frac{d}{dn} [F_c(p)]$

4. Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2, |x| < a \\ 0, |x| > a > 0 \end{cases}$ Hence show that

$$\int_{0}^{\infty} \frac{\sin x - x \cos x}{x^3} dx = \frac{\pi}{4}.$$

[10M]

5. a) Find the Fourier transform of $f(x) = e^{-\frac{x^2}{2}}$, $-\infty < x < \infty$

[5M]

b) If F(p) is the complex Fourier transform of f(x), then prove that the complex

Fourier transform of $f(x) \cos ax$ is $\frac{1}{2} [F(p+a) + F(p-a)]$

[5M]

6. a) Find the Fourier cosine transform of $e^{-ax}\cos ax$, a > 0

[5M]

b) Find the Fourier cosine transform of
$$f(x) = \begin{cases} x, & \text{for } 0 < x < 1 \\ 2 - x, & \text{for } 1 < x < 2 \\ 0, & \text{for } x > 2 \end{cases}$$
 [5M]

7. Find the Fourier sine and cosine transforms of $f(x) = \frac{e^{-ax}}{x}$ and deduce that $\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin sx \, dx = \tan^{-1} \left(\frac{s}{a}\right) - \tan^{-1} \left(\frac{s}{b}\right).$

$$\int_0^\infty \frac{e^{-ax} - e^{-bx}}{x} \sin sx \, dx = \tan^{-1} \left(\frac{s}{a}\right) - \tan^{-1} \left(\frac{s}{b}\right).$$

8. Find the Fourier sine and cosine transforms of $f(x) = e^{-ax}$, a > 0 and hence deduce the integrals

(i)
$$\int_{0}^{\infty} \frac{p \sin px}{a^2 + p^2} dp$$
 (ii) $\int_{0}^{\infty} \frac{\cos px}{a^2 + p^2} dp$ [10M]

9. Find the inverse Fourier sine transform of f(x) of $F_s(p) = \frac{p}{1+p^2}$ [10M]

- 10.a) Find the finite Fourier sine transform of f(x), defined by $\begin{cases} x, & 0 \le x \le \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} \le x \le \pi \end{cases}$ [5M]
- b) Find the inverse finite Fourier sine transform of f(x), If $F_s(n) = \frac{16(-1)^{n-1}}{n^3}$, where n is a positive integer and 0 < x < 8.

[5M]

SIDDHARTH GROUP OF INSTITUTIONS:: PUTTUR

Siddharth Nagar, Narayanavanam Road — 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: MATHEMATICS-III(18HS0834)

Vear & Sem: II-B Tech& I-Sem

Regulation: R18

Vear &Sem: II-R Tech& I-Sem	Regulation: R18			
UNIT -V PARTIAL DIFFERENCIAL EQUATIONS				
1.a)Solve $xp + yq = 3z$.	[2 M]			
b) Solve $r + 6s + 9t = 0$.	[2 M]			
c)Solve $p(1+q) = qz$.	[2 M]			
d) Solve $\frac{\partial^3 z}{\partial x^3} - 4 \frac{\partial^3 z}{\partial x^2 \partial y} + 4 \frac{\partial^3 z}{\partial x \partial y^2} = 0.$	[2 M]			
e) Find the particular integral of the equation $4r + 12s + 9t = e^{3x-2y}$.	[2 M]			
2. a) Solve $(x^2 - y^2 - z^2)p + 2xyq = 2xz$.	[5 M]			
b) Solve $(z - y)p + (x - z)q = y - x$.	[5 M]			
3. a) Solve $x(y-z)p + y(z-x)q = z(x-y)$.	[5 M]			
b) Solve $x^2(y-z)p + y^2(z-x)q = z^2(x-y)$.	[5 M]			
4. a) Solve $p^2 + q^2 = x + y$.	[5 M]			
b) Solve $z^2(p^2x^2+q^2)=1$.	[5 M]			
5. a) Solve $r-4s+4t=e^{2x+y}$.	[5 M]			
b) Solve $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial x \partial y} - 6 \frac{\partial^2 z}{\partial y^2} = \cos(2x + y)$.	[5 M]			
6. a) Solve $(D^2 + 3DD' + 2D'^2)z = 24xy$.	[5 M]			
b) Solve $\frac{\partial^3 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} = 2e^{2x} + 3x^2 y$.	[5 M]			
7. a) Solve $(D^2 + 2DD' + D'^2 - 2D - 2D')z = \sin(x + 2y)$.	[5 M]			
b) Solve $(D-D'-1)(D-D'-2) = e^{2x-y}$. [5 M]				
8. A tightly stretched string of length l with fixed ends is initially in				
giving each point a velocity $bsin^3\left(\frac{\pi x}{l}\right)$. Find the displacement $y(x)$	(x, t). [10 M]			
9. A tightly stretched string with fixed end points $x=0$ and $x=l$ is ir is set vibrating by giving each point a velocity $kx(l-x)$. Find the from one end at any time t .	nitially at rest in its equilibrium position. It			
10. A homogeneous rod of conducting material of length 100cm has the temperature initially is $u(x, \theta) = x$, $\theta \le x \le 5\theta$	as its ends kept at zero temperature and			

[10 M]

=100-x, $50 \le x \le 100$

Find the temperature u(x, t) at any time.